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Abstract
If accent differences can predict the type of speech recogni-
tion errors, a smaller dataset systematically representing accent
differences might be sufficient and less resource intensive for
adapting an automatic speech recognition (ASR) to a novel va-
riety compared to training the ASR on a large, unsystematic
dataset. However, it is not known whether ASR errors pattern
according to accent differences. Therefore, we tested the per-
formance of Google’s General American (GenAm) and Stan-
dard Australian English (SAusE) ASR on both dialects using
words systematically representing accent differences. Accent
differences were quantified using the different number of vowel
phonemes, the different phonetic quality of vowels, and differ-
ences in rhoticity (i.e., presence/absence of postvocalic /ô/). Our
results confirm that word recognition is significantly more accu-
rate when ASR dialect matches the speaker dialect compared to
the mismatched condition. Our results reveal that GenAm ASR
is less accurate on SAusE speakers due to the higher number of
vowel phonemes and the lack of postvocalic /ô/ in SAusE. Thus,
the data need of adapting ASR from GenAm to SAusE might be
reduced by using a small dataset focusing on differences in the
size of vowel inventory and in rhoticity.
Index Terms: automatic speech recognition, accent differ-
ences, adapting ASR to novel varieties

1. Introduction
An accessible ASR must recognise speakers’ intended mean-
ing irrespective of their idiosyncrasies [1, 2]. Speaker-
independence is achieved through training ASR on vast
amounts of speech; however, recognition accuracy is reduced
when the domain is mismatched between training and test data
[1, 3]. A pervasive source of mismatch is difference in dialect
between training and test speakers [3, 4, 5, 6]. ASR performs
better on General American English compared to Californian
American English [5]. Word recognition is consistently more
accurate for five Arabic dialects when ASR is trained and tested
on the same dialect compared to training ASR on all dialects
[6]. Recognition accuracy of 14 Swiss dialects varies from 40%
to 80% depending on dialect, despite training ASR on all 14 [7].

Although both the overall negative effect of accent differ-
ences on ASR, and the details of accent differences are known,
it is still not clear whether ASR errors can be predicted from
linguistic differences between training and speaker data. There-
fore, we tested Google’s commercially available ASR to in-
vestigate whether accent differences could predict ASR perfor-
mance. We selected the accents General American (GenAm)
and Standard Australian English (SAusE), because the differ-
ences in the number of phonemes, in the acoustic-phonetic qual-
ity of vowels, and in rhoticity (i.e., presence vs. absence of
postvocalic /ô/) are documented in great detail for these vari-
eties [8, 9, 10]. We hypothesised that (1) both ASRs would be

more accurate when ASR-dialect and speaker-dialect are con-
gruent, i.e., GenAm ASR would be more accurate on GenAm
speakers than SAusE speakers and vice versa. We hypothesised
that (2) in the incongruent conditions, both ASRs would be less
accurate due to (2.1) phonemic differences (2.2) acoustic-pho-
netic vowel differences and (2.3) differences in rhoticity. If our
hypotheses are born out, showing that accent differences can
predict ASR errors, then GenAm ASR might be adapted for
SAusE using a smaller training set that represents accent differ-
ences systematically. Thus, the data need for adapting ASR for
a novel variety might be reduced.

1.1. Accent differences between GenAm and SAusE

Differences between accents of English can be captured using
standard lexical sets that match vowels of a particular set of
words and are identified by a key exemplar (Table 1) [8]. For
instance, almost all the words that have /aI/ in GenAm have /Ae/
in SAusE (e.g., price, dice, vice). This correspondence between
GenAm /aI/ and SAusE /Ae/ is identified by the key word PRICE,
making the PRICE-vowel /aI/ in GenAm and /Ae/ in SAusE.

Lexical sets capture three key differences between GenAm
and SAusE, namely (1) phonemic differences (2) acoustic-pho-
netic differences (3) and difference in rhoticity [8]. Phonemic
differences between GenAm and SAusE are shown in the dif-
ferent number of vowel phonemes: GenAm has 15 stressed
vowels and schwa, while SAusE has 18 stressed vowels and
schwa (Table 1) [9, 10]. For instance, the GenAm sets TRAP
and BATH contain /æ/, whereas in SAusE, TRAP is pronounced
with /æ/ and BATH with /5:/. That is, the lexical sets TRAP and
BATH contain the same vowel in GenAm, but different vowels
in SAusE. GenAm and SAusE vowels differ in their acoustic-
phonetic characteristics [11, 10]. For example, FACE is more
closed in GenAm than in SAusE, and GOOSE is back in GenAm,
but central in SAusE. GenAm is a rhotic variety of English, i.e.,
/ô/ can appear before a vowel, a consonant, or a pause. That
is, there is an /ô/ in red, cart, and car [9]. SAusE is a non-
rhotic accent, i.e., /ô/ can only appear before a vowel, but not
before consonant, or a pause. That is, there is an /ô/ in red, but
not in cart or car [10]. The lexical sets NEAR, SQUARE, CURE,
START, NORTH, and NURSE contain a postvocalic /ô/ in GenAm,
but not in SAusE.

2. Methods
2.1. Corpora

Sixty-four (male = 30, female = 34) GenAm speakers from the
LibriSpeech, and 64 (male = 30, female = 34) SAusE speakers
from the AusTalk corpus were selected [13, 14]. The speakers
were verified to have a GenAm and SAusE accents by phoneti-
cally trained native listeners of their respective dialects.
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Table 1: Lexical sets with GenAm [11] and SAusE [12] IPA.

Phonemic differences Phonetic differences
Lexical set GenAm SAusE Lexical set GenAm SAusE
KIT I I FLEECE i: i:
NEAR I I@ GOOSE u: 0:
DRESS E e STRUT 2 5
SQUARE E e: PRICE aI Ae
FOOT U U MOUTH aU æO
CURE U o: CHOICE oI oI
TRAP æ æ FACE eI æI
BATH æ 5: GOAT oU @0
START A: 5: THOUGHT O [A:] o:
LOT A: O NORTH O o:

NURSE @~ [3~] 3:

2.2. Material

Three (target words) × 21 (lexical sets ) = 63 monosyllabic
words were selected to systematically represent accent differ-
ences. Each lexical set was evaluated based on phonemic and
phonetic vowel differences, and rhoticity differences (Table 2).

Table 2: Lexical sets and scoring accent differences

Phonemic differences Phonetic differences
Lexical Set CS WVS /ô/ Lexical Set CS WVS /ô/
KIT 2 1 0 FLEECE 1 1 0
NEAR 2 0.5 1 GOOSE 1 0.8 0
DRESS 2 0.8 0 STRUT 1 0.7 0
SQUARE 2 0.7 1 PRICE 1 0.7 0
FOOT 2 1 0 MOUTH 1 0.8 0
CURE 2 0.7 1 CHOICE 1 1 0
TRAP 2 1 0 FACE 1 0.85 0
BATH 2 0.6 0 GOAT 1 0.7 0
START 2 0.7 1 THOUGHT 1 0.8 0
LOT 2 0.6 0 NORTH 1 0.8 1

NURSE 1 1 1

Phonemic vowel differences were quantified with a Corre-
spondence Score (CS). Lexical sets containing a vowel with
a one-to-one correspondence between GenAm and SAusE re-
ceived a CS of one, indicating higher phonemic similarity. Lexi-
cal sets with a GenAm vowel corresponding to two SAusE vow-
els received a CS of two, indicating lower phonemic similarity.

Phonetic vowel differences were quantified with Weighted
Vowel Similarity (WVS) score, adapted from [15]. Vowels
were aligned, and each slot was scored on a scale of zero (no
agreement) to one (maximal agreement). The score is the sum
of agreement scores for height (close, close-lax, close-mid,
open-mid, open) ranging from 0.0 to 0.4; for frontess (front,
front lax, central, back lax, back), ranging from 0.0 to 0.4; for
length (long, short), ranging from 0.0 to 0.1; and for rounding
(rounded, unrounded), ranging from 0.0 to 0.1. Having calcu-
lated WVS for every slot in a vowel, average WVS was cal-
culated (Table 3, Equation 1). Slots were counted maximally,
i.e., lexical sets that are diphthongs in SAusE but not in GenAm
(e.g., NEAR) were assigned two slots.

WV S =
Height+ Frontness+ Length+Rounding

NumberOfSlots
(1)

Rhoticity was coded as a binary variable: lexical sets con-
taining a postvocalic /ô/ in GenAm but not in SAusE were

Table 3: WVS for the lexical set FACE calculated as mean WVS
for GenAm /e/ and SAusE /æ/ (first segment) and GenAm /I/ and
SAusE /I/ (second segment).

Slot GenAm SAusE Height Front. Length Round. Sum Mean
1 e æ 0.1 0.4. 0.1 0.1 0.7 0.852 I I 0.4 0.4 0.1 0.1 1

marked as 1 for R-dropping. Lexical sets not containing a
postvocalic /ô/ in either of the dialects were marked with 0.

For each speaker, recordings of a semantically neutral car-
rier sentence (e.g., Who says , I said ) were extracted from the
corpora. The carrier sentence was inserted before the target
word; sentence and target were separated by 10 ms of silence.

2.3. Procedure

The sentences were transcribed using Google’s commercially
available ASR for GenAm and SAusE, creating two congruent
and two incongruent conditions. In the congruent conditions,
ASR dialect matched speaker dialect. That is, target words
produced by GenAm speakers were submitted to GenAm ASR
whereas target words produced by SAusE speakers to SAusE
ASR. In the incongruent conditions, ASR dialect did not match
speaker dialect. That is, target words by GenAm speakers were
submitted to SAusE ASR and vice versa.

2.4. Analysis

The transcription returned by Google was scored as Correct,
when the transcription contained the target word, Incorrect,
when the transcription did not contain the target word, and Not
Recognised, when no transcription was returned. Response ac-
curacy was treated as ordinal data with Correct transcription
being the best match for the target, and Incorrect transcription
being a better match than Not Recognised. Although it is not
known where in Google ASR the different errors of Not Recog-
nised and Incorrect originated from (e.g., insufficient training
data, incorrect pruning of search paths), a Not Recognised error
indicates that the ASR could not map the stimulus onto any-
thing, and an Incorrect indicates that the ASR could map the
stimulus onto something, making Not Recognised worse than
Incorrect.

We constructed an Ordinal Mixed Model (OMM) [16, 17]
with the dependent variable Accuracy (zero for Not Recognised,
one for Incorrect, and two for Correct). The independent vari-
ables were ASR Dialect, Speaker Dialect (both contrast coded,
comparing SAusE to the baseline GenAm), Correspondence
Score (CS, contrast coded, comparing One-to-Two to the base-
line of One-to-One), R Dropping (contrast coded, comparing
R Dropping to the baseline of No R Dropping), and Weighted
Vowel Similarity (WVS, continuous from 0 for maximal dis-
similarity to 1 for maximal similarity). Interactions between
ASR Dialect and Speaker Dialect; ASR Dialect and Correspon-
dence Score, R Dropping, and WVS; and Speaker Dialect and
Correspondence Score, R Dropping, and WVS were included.
Interactions between CS, WVS, and R Dropping were not in-
cluded due to multicollinearity between these factors. Speaker
and Target were added as random intercepts.

3. Results
In the OMM, the main effect of SAusE Speaker Dialect indi-
cates that GenAm ASR is significantly less accurate at recog-
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nising SAusE speakers compared to GenAm speakers (β =
−1.401, z0.575 = −2.439, p = 0.015). The main effect of
SAusE ASR Dialect indicates that SAusE ASR is significantly
less accurate at recognising GenAm speakers than GenAm ASR
(β = −1.087, z0.547 = −1.988, p = 0.046). The interaction
between SAusE Speaker Dialect and SAusE ASR Dialect in-
dicates that ASR Accuracy increased significantly when both
ASR and Speaker Dialect were SAusE (β = 2.907, z0.768 =
3.785, p < 0.001). The main effects of Speaker Dialect, ASR
Dialect, their interaction, are consistent with Hypothesis (1),
stating that ASR accuracy is significantly better in the congru-
ent conditions than in the incongruent conditions due to accent
differences between training and test data (Figure 1).

However, the lower accuracy of the GenAm ASR on SAusE
speakers may also be caused by the SAusE test data being over-
all more difficult. Therefore, we tested the effect of Speaker
Dialect with respect to ASR Dialect using planned comparison
with Bonferroni correction [18, 17]. The planned comparison
shows that target words are recognised significantly more ac-
curately in the congruent conditions (p < 0.0001 for GenAm
ASR and p < 0.005 for SAusE ASR).

The lower accuracy of the SAusE ASR on GenAm speakers
may also be caused by the overall lower quality of the SAusE
ASR. Therefore, we tested the effect of ASR Dialect with re-
spect to Speaker Dialect using planned comparison with Bon-
ferroni correction [18, 17]. The planned comparison revealed
that both GenAm and SAusE ASR perform significantly more
accurately in the congruent conditions (p < 0.0001 both for
GenAm and SAusE speakers). The results of the planned com-
parisons are consistent with Hypothesis (1), as they indicate that
ASR accuracy is significantly better in the congruent conditions
than in the incongruent conditions.

Figure 1: Accuracy: The effect of Speaker- and ASR Dialect.

Having tested the effect of dialect mismatch on ASR ac-
curacy, the effect of CS, WVS, and R Dropping were anal-
ysed in the OMM. We found no significant main effect of CS,
WVS, or R Dropping. That is, we found no evidence of CS,
WVS, and R Dropping affecting the accuracy of GenAm ASR
on GenAm speech. The lack of results are consistent with Hy-
potheses (2.1)-(2.3) as accent differences were not expected to
affect the congruent conditions.

A significant negative interaction between SAusE Speaker
Dialect and CS ( β = −0.434, z0.187 = −2.327, p = 0.02)
indicates that the accuracy of GenAm ASR on SAusE Speakers
significantly decreases when the target word contains a vowel

phoneme with a one-to-two vowel correspondence (Figure 3).
This finding is consistent with Hypothesis (2.1), stating that
ASR accuracy would be negatively affected by phonemic dif-
ferences in the incongruent conditions.

The lack of significant interaction between Speaker Dialect
and WVS indicates that the accuracy of GenAm ASR on SAusE
Speakers is not significantly affected by phonetic vowel differ-
ences (Figure 2). This result does not support Hypothesis (2.2),
stating that acoustic-phonetic differences would negatively im-
pact ASR in the incongruent conditions.

Figure 2: Accuracy by ASR- and Speaker Dialect: No effect of
phonetic similarity.

The significant negative interaction between Speaker Di-
alect and R Dropping (β = −0.536, z0.207 = −2.586, p =
0.01) indicates that the accuracy of GenAm ASR on SAusE
Speakers significantly decreases when the target word contains
a postvocalic /ô/ in GenAm, but not in SAusE (Figure 3). This
finding is consistent with Hypothesis (2.3), stating that differ-
ences in rhoticity would negatively affect ASR accuracy in the
incongruent conditions.

Figure 3: Accuracy by Speaker- and ASR-Dialect: The effect of
vowel correspondence and R Dropping.

We found no significant interactions between SAusE ASR
Dialect and any of the factors capturing accent differences, in-
dicating that the accuracy of SAusE ASR on GenAm Speak-
ers is not affected significantly by accent differences. These
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results are not consistent with Hypotheses (2.1)-(2.3), stating
that accent differences would negatively impact ASR accuracy
in the incongruent conditions. The three-way interactions be-
tween SAusE ASR Dialect, SAusE Speaker Dialect, and either
CS, WVS, or R Dropping were not significant.

4. Discussion and Conclusion
Automatic recognition of GenAm and SAusE speech by
GenAm and SAusE ASR was tested, yielding two congruent
(GenAm ASR - GenAm Speaker and SAusE ASR - SAusE
speaker), and two incongruent conditions (GenAm ASR -
SAusE speaker, SAusE ASR - GenAm speaker). Target words
systematically represented accent differences.

Hypothesis (1) predicted that ASR accuracy would be lower
when ASR Dialect and Speaker Dialect are incongruent. Hy-
pothesis (1) is born out, as the collective results of our OMM
and planned comparisons show that GenAm speakers are recog-
nised by GenAm ASR more accurately than by SAusE ASR and
vice versa. In addition, GenAm ASR is better at recognising
GenAm speakers than SAusE ASR and vice versa. Therefore,
reduced accuracy is attributed to accent differences, rather than
to the overall better quality of one ASR or one test dataset. Re-
duced ASR accuracy caused by ASR- and speaker accent dif-
ferences is consistent with the existing body of literature, and
it can be caused by using incongruent training data, acoustic
model, and/or pronunciation dictionary [3, 4, 5, 6].

Having confirmed that ASR accuracy is adversely impacted
by accent differences, we analysed the effect of phonemic,
phonetic, and rhoticity differences because, to the best of our
knowledge, accent differences have not been used to predict
speech recognition errors. In the congruent conditions, ac-
cent differences were not expected to affect ASR accuracy (Hy-
potheses (2.1)-(2.3)), and there was no signficant effect of ac-
cent differences on ASR accuracy in the congruent condition.

In the incongruent conditions, an imbalanced picture
emerges: accent differences negatively impact target accuracy
when GenAm ASR is used on SAusE speech, but not in the
other direction. Hypothesis (2.1) predicted that ASR accuracy
would be reduced in the incongruent conditions due phonemic
differences caused by the larger number of vowel phonemes in
SAusE. Hypothesis (2.1) is partially supported, as words con-
taining vowel phonemes with one-to-two mappings between
GenAm and SAusE are recognised less accurately when a
GenAm ASR is applied to SAusE speech. However, no effect
of vowel correspondence was found when a SAusE ASR was
applied to GenAm speech. This can be attributed to GenAm
ASR not having suitable acoustic models for the vowels that
are only present in SAusE. In contrast, the acoustic models of
the smaller vowel inventory of GenAm might be included in the
models of the larger SAusE vowel inventory.

Hypothesis (2.2) predicted that ASR accuracy would be re-
duced in the incongruent conditions, due to acoustic vowel dif-
ferences. Hypothesis (2.2) is not supported by our results, as
vowel similarity had no significant effect on the recognition of
GenAm target words by SAusE ASR or on the recognition of
SAusE target words by GenAm ASR.

Hypothesis (2.3) predicted that ASR accuracy would be
reduced in the incongruent conditions, due to differences in
rhoticity. Our results partially support hypothesis (2.3), as
words containing a postvocalic /ô/ in GenAm but not in SAusE
were recognised less accurately when GenAm ASR was applied
to SAusE speech. However, differences in rhoticity did not af-
fect recognition accuracy of GenAm speech by SAusE ASR.

The adverse impact of R Dropping on the recognition of SAusE
words by GenAm ASR can be attributed to the GenAm ASR not
being trained on non-rhotic accents, as postvocalic /ô/ is always
present in GenAm. In contrast with the GenAm training data,
postvocalic /ô/ must have been part of the SAusE training data,
as word-final /ô/ is pronounced in connected speech in SAusE
when /ô/ is was followed by a vowel at the beginning of the next
word. For example, /ô/ is pronounced in the phrase far away
in SAusE. Rhoticity differences may also contribute to the low
recognition accuracy of non-rhotic African American Vernacu-
lar English by YouTube’s automatic transcription [5, 19].

The results collectively show that phonemic and rhoticity
differences impact word recognition accuracy, whereas fine-
grained vowel differences do not. Therefore, segment-level ac-
cent differences, namely the presence of a vowel phoneme un-
known to GenAm ASR, and the absence of postvocalic /ô/ seem
to negatively impact word recognition, whereas subsegmental
differences, such as a change in vowel quality, do not.

However, the effects of phonemic, phonetic, and rhoticity
differences are challenging to separate due to the correlations
between these factors caused by historical language changes af-
fecting pre-/ô/ vowels in SAusE but not in GenAm [8, 20]. As
a result of these changes, lexical sets containing a postvocalic
/ô/ in GenAm, but not in SAusE, always show phonemic dif-
ferences with a one-to-two vowel correspondence, as well as
larger acoustic-phonetic differences. Therefore, only a few lexi-
cal sets contain phonetically different vowels without phonemic
or rhoticity differences, and these might not have been sufficient
to show how phonetic differences affect ASR quality.

The limitation of our study is using commercially avail-
able ASR. As Google ASR is a proprietary software, it is not
known how the models were built and what data they were
trained on. For instance, the LibriSpeech audio corpus, used
for testing the recognition of GenAm speech in this experiment,
is often used to train ASR systems, such as [21], and it might
have been used to train Google’s GenAm ASR as well. When
the same data is used for training and testing ASR, spuriously
high word recognition accuracy is expected, leading to better
recognition of GenAm words by the GenAm ASR. The SAusE
ASR might have been trained on a combination of GenAm
and SAusE datasets to compensate for the comparative lack of
SAusE data, as combining multiple dialects has improved ASR
for low-resource varieties in [22, 4, 23, 24]. Training SAusE
ASR on both dialects could explain why accent differences did
not affect recognition of GenAm speech by SAusE ASR.

To conclude, errors of GenAm ASR on SAusE speech can
be predicted from the accent differences in the number of vowel
phonemes and in rhoticity. Therefore, when adapting an exist-
ing GenAm ASR for SAusE, we recommend ASR to be specif-
ically trained on a dataset that emphasises phonemic vowel dif-
ferences and differences in rhoticity. Creating targeted training
dataset focusing on these linguistic features might allow the use
of a smaller training set and thus, it might reduce the data need
of ASR. In the future, we aim to improve the performance of
our UNSW ASR, currently trained on GenAm data, on SAusE
by training it on a SAusE dataset systematically representing
accent differences.
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