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Abstract
Training forced phonemic aligners for novel language varieties
is non-trivial, as it requires aligned corpora. However, align-
ing novel corpora requires accurate forced aligners. To align
AusKidTalk, an audio corpus of Australian English (AusE)
speaking children, we trained three custom aligners on differ-
ent datasets: age-matched American English (AmE) children,
dialect-matched AusE-speaking adults, and their combination.
Forced aligner performance using the three custom aligners
and the Munich Automatic Segmentation System (MAUS) was
evaluated against manual segmentation. The dialect-matched
and combined custom aligners outperform MAUS, but the age-
matched aligner does not. Our aligners’ improved forced seg-
mentation will reduce the time-need of manual correction.
Index Terms: forced phonemic alignment, accent differences,
developmental differences, custom aligner for AusE-speaking
children, audio corpus

1. Introduction
Segmenting acoustic data into phonemes is necessary for
phoneme-level acoustic analysis in linguistics [1, 2]. While
manual segmentation is considered the “gold standard” in terms
of accuracy [2, 3], the use of forced aligners is recommended as
manual phonemic alignment may take 800-times more than the
length of the audio [4, 5]. Therefore, aligning large datasets is
only possible using automatic forced aligners due to the time
associated with manual alignment [4, 5].

During forced alignment, the orthographic transcription
of the data is converted to phonemic transcription using a
grapheme-to-phoneme pronunciation dictionary, and the phone-
mic transcription is mapped onto the acoustic data using acous-
tic models [2]. The acoustic model is created by pre-training the
aligner using existing time-aligned speech corpora and a pro-
nunciation dictionary, providing grapheme-to-phoneme map-
pings [2, 6]. Pre-trained models are not affected by speaker-
specific idiosyncrasies, as they are trained on a large number of
speakers, enabling them to generalise across them by learning
speaker-independent characteristics of a language [1, 6, 7].

The performance of forced aligners is negatively impacted
by domain- or population level linguistic differences between
training- and novel data, such as differences between read and
spontaneous speech, or between dialects [6, 7, 8, 9, 10]. Forced
aligners trained on American English (AmE), while generally
accurate on other dialects of English, produce larger errors in
vowel boundaries as differences between training and novel
data increase [8, 9]. For instance, an aligner trained on AmE,
places 90% of automatic boundaries within 20 ms of manual
boundaries for Received Pronunciation (RP), but only 75% for
the Westray variety of Scots, a variety that shows larger differ-
ences from AmE than RP [8]. In Trinidad English, automatic

vowel boundaries are overall accurate with 9–24 ms discrepan-
cies from human alignment; however, Trinidad English-specific
vowels show larger discrepancies [9]. Even small differences
between automatic and human boundaries can have a roll-on
effect, as vowel duration measured using forced and manual
alignment may differ by up to 17 to 67 ms in Trinidad English,
with Trinidad English-specific vowels showing the largest mea-
surement differences [9]. Due to the adverse effect of accent
differences, accent-specific aligners were developed for Ameri-
can, British, Australian, and New Zealand English [11].

Developmental differences between adults’ and children’s
speech also have a negative effect on the accuracy of forced
aligners [10]. As most aligners are pre-trained on adult speech,
they show low accuracy on children’s speech, with 69% to 79%
agreement with human annotation [10]. Forced-aligner accu-
racy improves for older children compared to younger children,
as children become more adult-like, and thus more accurately
aligned [10]. Despite the adverse impact of age, no age-specific
forced aligner has been pre-trained due to the lack of sufficiently
sized and segmented children’s corpora [12].

AusKidTalk, a large-scale corpus of Australian English
(AusE) speaking children, is currently being developed to pro-
vide a corpus large enough for developing automated speech
analysis tools for the novel variety of AusE-speaking children
[12]. Developing a novel forced aligner for AusE-speaking
children requires annotated training data, therefore AusKidTalk
must, at least partially, be annotated using existing tools. How-
ever, AusKidTalk differs from the training data used in most
available forced aligners in its accent (AusE vs. AmE) and age
(children vs. adults). Therefore, we developed and tested three
custom aligners with different pronunciation dictionaries and
acoustic models, each trained on partially matching datasets for
AusE-speaking children. The first acoustic model was trained
on AmE-speaking children, thus training data matched target
age, but not dialect. The second acoustic model was trained
on AusE-speaking adults, thus training data matched target di-
alect, but not age. The third acoustic model was trained on both
datasets, thus training data partially matched age and dialect.
We evaluated the performance of our custom aligners by com-
paring it to human ground truth annotation as well as to the
Munich Automatic Segmentation System (MAUS) [11].

2. Methods
2.1. Custom aligners

We developed three custom aligners, each with different acous-
tic models and pronunciation dictionaries (Fig. 1). The acoustic
models were implemented using a Factored Time-Delay Neural
Network in the Kaldi toolkit [13, 14], and trained on three, par-
tially domain-matched datasets: AmE-speaking children (AmE
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Child), AusE-speaking adults (AusE Adult), and on the combi-
nation of the two sets (Combined) (Fig. 1). The AmE Child
model was trained on four children corpora yielding a total
of 400 hours including single words and continuous speech
– the Oregon Graduate Institute kids’ speech corpus [15], the
Carnegie Mellon University kids’ speech corpus [16], the Col-
orado University Kids’ corpus [17, 18], and the My Science
Tutor Children’s speech corpus [19]. Grapheme-to-phoneme
conversion was provided by The Carnegie Mellon University
(CMU) Pronouncing Dictionary [20]. The AusE adult model
was trained on 800 hours of speech using the scripted, single
word and continuous speech production tasks from the AusTalk
corpus [21]. Grapheme-to-phoneme transcription was provided
by orthographic- and phonemic transcriptions of the tasks used
to elicit speech in AusTalk. The Combined model was trained
on 1200 hours of speech using the AmE-speaking children’s
and the AusE-speaking adults’ corpora. Grapheme-to-phoneme
transcription was provided by the CMU Pronouncing Dictio-
nary for the AmE-speaking children and by AusTalk transcrip-
tions for the AusE-speaking adults. The Combined model used
Multi-Task Learning to share consonant output layer between
the dialects and had dialect-specific vowel output layers [22].

Figure 1: Schematic diagram of forced aligner architecture.

During forced alignment, the speech signal is divided into
25 msec frames with 15 msec overlap. Each frame is multiplied
by a Hamming windowing function and 40 Mel-Frequency
Cepstral Coefficients (MFCC) are extracted from each win-
dowed frame (Fig. 1). The extracted features are fed into
the acoustic model along with the expected phoneme sequence
created through phonemic transcription of the prompts’ ortho-
graphic transcription using the appropriate pronunciation dic-
tionary – CMU Pronouncing Dictionary for the AmE Child
model and corpus transcriptions for the AusE Adult model. The
acoustic model assigns each frame to the most likely phoneme
based on the pre-trained phoneme models and is constrained by
the given phoneme sequence.

2.2. Test data

Forced-aligner performance was evaluated using data from the
AusKidTalk corpus [12]. Speech recordings of eleven (M =
7, F = 4, aged from 4;10 to 11;11, mean = 7;7) children were
extracted from the database. Children were native speakers of
AusE without any speech disorders. Children produced 18 tar-
get words in a picture naming task (range = 11-15 words per
child, mean = 13.9 words), giving a total of 153 words. Target
words were extracted and saved as single-word wav files.

2.3. Forced and manual aligning

Words were force-aligned with our AmE Child, AusE Adult,
and Combined custom aligners, using the sound files and their

orthographic transcriptions. Words were force-aligned with
the MAUS webtool, using the grapheme-to-phoneme (G2P) →
MAUS pipeline without automatic speech recognition, and with
the AusE pronunciation dictionary [11, 23, 24, 25]. Expert op-
tions were set to default; no custom rules were added. Sound
files paired with matching text files containing orthographic
transcription of the word with standard English spelling were
uploaded to MAUS. MAUS was accessed on 27 August 2021,
as well as on 06 June 2022. Results from 2022 are reported.

Manual segmentation was carried out by a trained phoneti-
cian in Praat [26], to provide ground truth segmentation prior
to observing automatic alignment. Manual segment boundary
placement was informed by periodicity, amplitude, and formant
structure as presented in the waveform and the spectrogram.

All phoneme-level segmentation was carried out on wav
files containing single words to prevent errors caused by con-
fusion between words, such as mistaking the last segment of
snake with the first segment of key, and to minimise the size
of alignment errors. All aligners returned the results in Praat
textgrids [26]. Boundary locations for all aligners (forced and
manual) were extracted from the textgrids using Praat [26].

2.4. Analysis

A total of 816 (phoneme boundaries) × 4 (forced aligners) =
3,264 automatic boundaries were compared to manually placed
boundaries. Boundary displacement between automatic and
manual boundaries was calculated as the absolute value differ-
ence of manual minus automatic boundary [2]. Accuracy of
automatically placed boundaries was calculated based on dis-
placement: automatic boundaries were rated as correct when
the boundary displacement was 20 ms or below, and as incorrect
when displacement exceeded 20 ms [3]. Overlap rate between
automatically segmented phonemes was calculated relative to
the human annotation, using the time shared between human
annotator and forced aligner (Dur Shared), the duration of the
human aligner (Dur Hum), and the duration of the forced aligner
(Dur Forced) using Equation 1 [2, 27].

Overlap =
DurShared

DurHum+DurForced−DurShared
(1)

Equation 1 gives a score from 0 (representing no overlap)
to 1 (representing complete overlap) for every phoneme. The
distribution of Overlap rate was left-skewed, and bound from
0 to 1, making it conditionally beta-distributed [29]. As 0 and
1, despite being genuine outcomes of Overlap rate, cannot be
included in the beta distribution (bound between 0 and 1, non-
inclusive), Overlap rate was transformed to beta distribution us-
ing the weighted average (N Boundary = 3,264) and a constant
0.5 (Equation 2) [28, 29].

OverlapBeta =
Overlap× (NBoundary − 1) + 0.5

NBoundary
(2)

We constructed a generalised linear mixed effect model
(GLM) with the dependent variable Accuracy (binomial fam-
ily). As the 20ms threshold for accurate boundaries can indi-
cate a quite large discrepancy, especially at fast speech rates, we
constructed two more GLMs, one with Displacement (Gaussian
family), and one with Overlap (Beta-transformed, Beta family)
as dependent variables. The independent variable was Aligner
(contrast coded, MAUS as baseline); Speaker was random in-
tercept [30, 31]. p-values were calculated using Satterthwaite’s
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degrees of freedom method [32]. Planned comparisons with
Bonferroni correction were used to compare the AmE Child,
AusE Adult, and Combined custom aligners to each other [33].
All data analysis was done in R [34].

3. Results
The Combined custom aligner (β = 0.325, z0.103 =
3.165, p = 0.0016) and the AusE Adult custom aligner
(β = 0.254, z0.102 = 2.492, p = 0.0127) produced signif-
icantly more accurate boundaries compared to MAUS. Accu-
racy decreased significantly when using the GenAm Child cus-
tom aligner compared to using MAUS (β = −0.489, z0.1 =
−4.896, p < 0.0001) (Fig. 2).

Planned comparison confirmed that MAUS is significantly
less accurate than the Combined (p = 0.0093), and more accu-
rate than the GenAm Child custom aligner (p < 0.0001). Con-
trary to our GLM model, planned comparison did not show a
significant difference between MAUS and the AusE Adult cus-
tom aligner (p = 0.0761). Planned comparison revealed that
the GenAm Child custom aligner performs significantly less ac-
curately than the Combined (p < 0.0001) and the AusE Adult
(p < 0.0001) custom aligners. No difference was found be-
tween the Combined and the AusE Adult aligners (p = 1).

Figure 2: Boundary accuracy. Significance taken from GLM.

Choice of forced aligner had no significant effect on bound-
ary displacement in the GLM (Fig. 4) or in the planned com-
parisons. Boundary displacement was non-significantly smaller
(i.e., better) using the AusE Adult (β = −3.452) and the AmE
Child aligners (β = −0.441) and non-significantly larger (i.e.,
worse) using the Combined aligner (β = 3.892) than MAUS.

Overlap rate increased significantly using the custom forced
aligners compared to MAUS (Combined: β = 0.196, z0.048 =
4.112, p < 0.0001; AusE Adult: β = 0.268, z0.048 =
5.604, p < 0.0001; AmE Child: β = 0.104, z0.048 =

Figure 3: Boundary displacement. Significance taken from
GLM.

2.155, p < 0.0311). Planned comparisons confirmed the sig-
nificantly larger (i.e., better) overlap rate for the Combined
(p = 0.0002) and the AusE Adult (p < 0.0001) aligners com-
pared to MAUS. Contrary to the GLM results, planned compar-
ison showed no difference between MAUS and the AmE Child
custom aligner (p = 0.1873). Planned comparison revealed
that the AmE Child custom aligner shows significantly less
overlap with the human annotation compared to the AusE Adult
(p = 0.0043) aligner but not from the Combined (p = 0.3396)
aligner. No difference was found between the Combined and
the AusE Adult aligners (p = 0.8045).

4. Discussion
Our goal was to explore the effect of age- and dialect mis-
match on forced-aligning AusE-speaking children’s speech.
The age-matched, but dialect mismatched custom aligner used
an acoustic model trained on AmE-speaking children and a
North American pronunciation dictionary; the age-mismatched
but dialect-matched aligner used an acoustic model trained on
AusE-speaking adults and an AusE pronunciation dictionary;
the Combined acoustic model used both datasets with both pro-
nunciation dictionaries. Our AusE Adult and Combined cus-
tom aligners outperformed MAUS, both of which used accent-
matched training data and pronunciation dictionary. How-
ever, performance decreased when our custom aligner used an
acoustic model trained on age-matched data and an accent-
mismatched pronunciation dictionary. Overall quality of all
forced aligners remained low (Table 1), therefore, manual
correction of automatically placed boundaries is required for
phoneme-level linguistic analysis of AusE-speaking children.

4.1. Custom aligners: the effects of dialect and age

Using the GenAm Child forced-aligner for AusE-speaking chil-
dren with an age-matched but dialect mismatched acoustic
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Figure 4: Overlap rate. Significance taken from GLM.

Table 1: Summary of results with accuracy (Acc., %), mean
displacement (Disp., ms), and mean overlap rate (Overlap, 0-1,
inclusive) for each forced aligner.

Aligner Age Dialect Acc. (%) Disp. (ms) Overlap (0-1)
MAUS × ✓ 59 28 0.69

AusE Adult × ✓ 65 24 0.74
AmE Child ✓ × 46 27 0.71
Combined ✓ ✓ 66 32 0.73

model yields worse performance than using a similar custom
forced aligner with accent-matched acoustic models. The poor
performance of the AmE Child aligner indicates that accent
differences (AmE vs. AusE) outweigh developmental differ-
ences (children vs. adults), as accent differences between AmE
and AusE adversely impact the usability of the acoustic model
trained on AmE data and of the pronunciation dictionary.

The AmE Child aligner’s acoustic model might perform
poorly due to dialectal differences. For instance, acoustic vowel
differences between AmE training and AusE test data (e.g.,
goose contains back /u:/ in GenAm, but central /0:/ in AusE)
might lead to incorrect feature mapping between the raw speech
and the phonemes. In addition, similarities between the AmE
Child training and the AusE child test data might be smaller
than expected. For instance, patterns for acquiring /l/, a late
acquired sound in both dialects, are similar but not identical
[37]. Differences in developmental trajectories between AmE
and AusE may cause incorrect feature-to-phoneme mapping
and further reduce the suitability of the acoustic model. Thus,
using accent-matched AusE training data for AusE-speaking
children is required due to the considerable accent differences
between GenAm and AusE and the small age-related similari-
ties between children of the two dialects.

The AmE Child aligner’s errors in words containing a post-
vocalic /ô/ in AmE, but not in AusE (e.g., car, spiderweb) can
be attributed to applying AmE grapheme-to-phoneme mapping

onto AusE speech. The pronunciation dictionary in the AmE
Child acoustic model maps the letter “r” onto the phoneme /ô/
in word-final and pre-consonantal positions, as AmE is a rhotic
accent, allowing /ô/ in word-final, pre-consonantal, and pre-
vocalic positions [36]. In contrast, AusE is a non-rhotic accent,
in which /ô/ only occurs pre-vocalically (e.g., /ô/ occurs in red,
but not in car and spiderweb) [35]. As a result, the GenAm
Child aligner attempts to map the single AusE vowel into a
vowel-/ô/sequence, resulting in a vowel offset placed before the
acoustic end of the vowel and an unnecessary /ô/ interval. Errors
caused by /ô/-insertion show the detrimental effect of incorrect
grapheme-to-phoneme mapping, although previously no such
effect of mismatched pronunciation dictionary was found [2].
Therefore, using a dialect-matched, AusE pronunciation dictio-
nary is recommended.

Combining the training data for AusE-speaking adults with
GenAm-speaking children increased the data-need of our cus-
tom aligner, without leading to a significant improvement in
performance. A non-significant reduction in the number of er-
rors, coupled with an increase in the size of errors was observed.
As the time needed for manual correction of automatic segmen-
tation depends on the number of errors rather than on the size
of errors, even a small difference in accuracy is likely to lead to
a considerable reduction in the time and resources required for
manual correction. As both accent-matched and age-matched
acoustic data are readily available through open-source corpora
[15, 16, 17, 18, 19, 21], combining accent-matched and age-
matched training data is recommended.

4.2. MAUS and the custom aligners

Our accent-matched aligners outperformed MAUS. The acous-
tic models of MAUS and our custom aligner’s AusE Adult
and Combined acoustic models were trained using the same
AusTalk dataset [38]. However, MAUS uses the Hidden
Markov Toolkit, whereas our custom aligner uses the Factored
Time-Delay Neural Network in the Kaldi toolkit [14, 39]. The
improved performance of our custom aligner is attributed to the
more advanced network used by Kaldi. Similarly, the Kaldi-
based Montreal Forced Aligner outperformed other aligners
with the Hidden Markov Toolkit [2].

MAUS was accessed on 27 August 2021 and on 06 June
2022. Between 2021 and 2022, the AusE dictionary for MAUS
was corrected, and the grapheme-to-phoneme, syllable, and
word stress models were re-trained. Using MAUS 2021 versus
MAUS 2022 with the same settings did not change the results,
despite some improvements: from 2021 to 2022, accuracy of
MAUS improved from 58% to 59%, displacement from 28 ms
to 27 ms, while overlap rate remained the same (0.69). MAUS
allows a high-level of customisation in forced aligning, includ-
ing the addition of custom rules. These custom features were
not used in our current study. It is possible that custom settings
would improve forced alignments.

5. Conclusion and future directions
To date, the best-performing forced aligner is our custom built
forced aligner using a combined acoustic model of AusE-
speaking adults and AmE-speaking children. The main draw-
back of our custom aligner is its lack of accessibility - while
MAUS is easily accessible through its web interface, our aligner
is located on a private server. Therefore, future work will in-
clude sharing our custom built aligner.
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