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Abstract

Annotating speech corpora for novel populations presents a cir-
cular problem: eliminating costly manual transcription requires
automatic speech recognition (ASR) tools not yet developed;
but developing ASR tools requires annotated speech corpora
not available. Manual transcription burden was reduced for
AusKidTalk, a novel population due to speaker age and ac-
cent, by strategic data collection protocol combined with out-of-
domain ASR tools for semi-automatic annotation. The data col-
lection protocol inserted tones and timestamps to automatically
segment the recordings. Automatic annotation was conducted
by out-of-domain tools for diarisation (NeMo) and orthographic
transcription (UNSW ASR). Transcription accuracy with 17%
word error rate (WER) for single words and 23% WER for con-
tinuous speech allowed for hand-correction instead of transcrip-
tion, reducing annotation burden. The workflow can be adapted
for other corpora and updated with new ASR tools as they be-
come available.
Index Terms: speech corpus, automatic speech recognition, or-
thographic transcription, Australian English, child speech

1. Introduction
Speech corpora, the large digital collections of transcribed and
aligned audio recordings, are crucial resources in speech tech-
nology and science, allowing for training automatic speech
recognition (ASR) tools and transforming phonetics by reveal-
ing variation in speech in new detail through the analysis of
large datasets [1, 2]. As accurate manual transcription is labour
and cost intensive, corpora are often developed using careful
read speech, such as word, sentence, and passage reading tasks,
reducing the need for orthographic transcription [3, 4, 5, 6].

Spontaneous speech requires manual or semi-automatic or-
thographic transcription prior to its use to train ASR models
or conduct more detailed analysis (e.g., phonetic transcription)
[7, 8, 9, 10]. Manual transcription is less accurate for sponta-
neous than for scripted speech, and transcription with good re-
liability and high agreement between transcribers is more time-
consuming and thus more costly than quick transcription with
lower agreement [11]. ASR tools can reduce the transcription
cost by providing automatic orthographic transcription. For ex-
ample, when building a corpus of spontaneous speech for the
high-resource language Italian, automatic transcriptions were
generated using freely available services provided by YouTube
[10]. However, automatic orthographic transcription had to be
reviewed and hand-corrected by a trained researcher to ensure
accuracy despite Italian being a high resource language [10].

*These authors contributed equally.

Developing corpus for a new population presents a circular
problem: automatically transcribing a new corpus requires ASR
tools not yet developed, but developing ASR tools requires an-
notated speech corpora from that population. Therefore when
building AusKidTalk, the first Australian English (AusE) child
speech corpus suitable for developing ASR tools, we designed
the data collection procedure to enable a semi-automated an-
notation workflow that considered the limitations of available
speech technologies. We applied an off-the-shelf diarisation
tool and developed a custom ASR trained on children speech,
as existing ASRs developed for and trained on adult speech per-
form 2–5 times worse on children’s speech despite various fea-
ture normalisation and model adaptation techniques [1, 12, 13].

Our results show that considering the availability and lim-
itations of speech technology when designing the data collec-
tion protocol can greatly reduce annotation burden. This paper
provides guidelines for developing speech corpora for new pop-
ulations, describing a collection and an automatic annotation
workflow that is transferable to different corpora and tasks and
can be updated with new technologies as they become available.

1.1. AusKidTalk data description

To date, AusKidTalk has collected data from 556 AusE-
speaking children aged 3–12 using three scripted tasks (single
word production using picture naming, sentence repetition, non-
word repetition) and two semi-spontaneous tasks (story-telling
based on picture prompts, emotional speech elicitation) [14].

Task 1 involved presenting 130 pictures, one at a time, to
generate 130 individual single or 2-word responses from a child.
Target words were designed to capture crucial markers of the
AusE accent as well as developmental markers during child lan-
guage acquisition. Task 3 presented a cartoon video sequence
and then prompted the child to tell the story in sentences. The
cartoon depicted a green-skinned boy on a skateboard finding
a large egg and becoming friends with the green dinosaur that
hatched [15]. Having watched the video, children retold the
story using their own words based on a series of 13 picture
prompts. Picture prompts were presented one-by-one.

Tasks and prompts were presented via a custom software on
an Android tablet while speech was recorded onto a PC using a
headset microphone and several directional microphones [14].
As the tasks and the prompts appearing on the tablet were not
synchronised directly to recorded audio file, the tablet played
a 1-second long high-frequency tone at the start of each task
and recorded timestamps at the start and end of each task and
prompt to assist task- and prompt identification (Sec. 2.1).

Interspeech 2025
17-21 August 2025, Rotterdam, The Netherlands

4268 10.21437/Interspeech.2025-539



1.2. Challenges in automatic transcription

As the entire session was recorded, each raw audio file con-
tained five tasks, background noise from the mini-games de-
signed to keep the child engaged, and at least three speakers
producing task-related and conversational speech: the child, the
pre-recorded model speaker who produced verbal prompts, and
the interviewer instructing and aiding the child (e.g., “Can you
speak up a bit?”, “Good job!”). Occasionally a parent/carer, sib-
ling(s), and/or a project researcher was also present in the room,
and their voice may have been audible during conversations.

The audio recordings contained task-related speech as well
as varied, spontaneous speech, inherent to children’s data. For
example, children responded to a picture of a cucumber by say-
ing “zucchini”, or by re-telling the story of the entire video
during the first picture prompt. There were non-task-related
conversations between the child and the interviewer leading the
recording session. The combination of unprompted responses,
spontaneous conversations, and three distinct speakers resulted
in a high volume of non-target speech, increasing the difficulty
of automated annotation.

1.3. The goal of the automatic annotation workflow

The goal and scope of the annotation workflow was to 1) iden-
tify individual tasks within the audio; 2) identify responses to
individual prompts within a task; 3) separate the child’s speech
from that of the adult(s); and 4) automatically transcribe the
child’s speech (Fig. 1). The output of the pipeline was a Praat
textgrid containing time-aligned automatically generated ortho-
graphic transcription of the child’s speech recorded with the
headset microphone.

2. The automatic speech processing tools
2.1. Task- and prompt-level time alignment

As the first step, the start and end time of Tasks 1 and 3 were
identified, as well as the start and end time during which each
picture prompt was presented (Fig. 1). To determine the start
and end of each task in the audio file, an automatic tone de-
tector was developed using a non-linear binary Support Vector
Machine (SVM) with the radial basis function kernel to identify
the location of the 1-second long tone. To train the SVM, fea-
ture vectors were extracted from 3700 not-tone and 3700 tone
frames selected randomly from 10 recordings and spliced with
the feature vector of two preceding and two succeeding frames.
The SVM classified each 10ms frame of the recording as tone
or not-tone. The moving average of the number of detected
tones was calculated using a one-second sliding window. Peak
points with a moving average above 0.9, i.e., with at least 90%
of frames classified as tone within a 1s window, were considered
to be tone positions. On a test set of 10 recordings, the classi-
fier achieved 0% false acceptance rate, with not-tone segments
never being misidentified as tones. The false rejection rate was
approximately 9% with 4/45 tones misidentified as not-tones.

The time duration between every two tones was calculated
and compared to the duration between every two timestamps
marking the start and the end of a task recorded automatically
during the interview. Reference tone-timestamp pairs were
identified when the duration between any two tone–sounds was
equal to the duration between any two timestamps. Tasks were
separated in the raw audio file using reference tone-timestamps.
The audio of Tasks 1 and 3 was extracted into separate wav files.

Picture prompts were identified using timestamps recorded

by the presentation software during data collection. The start
of a prompt interval was recorded when the prompt picture
was presented to the child. The end of a prompt interval was
recorded when the interviewer pressed the assessment button
indicating that the child completed the attempt of the current
prompt. Prompt timestamps were mapped onto Praat textgrids
with intervals indicating the start and end of each prompt (Fig.
2, top tier).

2.2. Diarisation with NeMo

To separate the child’s speech from non-child speech produced
by the interviewer, the model speaker, and occasionally by a
parent/carer present in the room, the NVIDIA NeMo Speaker
Diarisation tool was used as it allowed for being deployed lo-
cally and identifying short speaker-intervals, particularly impor-
tant for a single word production task [16, 17, 18, 19].

NeMo contained five main components. First, the Voice
Activity Detection (VAD) component identified the speech in-
tervals within an audio file. The VAD utilised the pretrained
MarbleNet model, a Convolutional Neural Network (CNN) de-
signed for speech activity detection [16]. The second compo-
nent used a multi-scale approach to segment the audio at dif-
ferent scales – typically 2, 1.5, 1, and 0.5 second in length –
and extracted speaker embeddings from each [17]. Information
from all scales was combined and the final speaker label was
determined based on the shortest segment. The third compo-
nent extracted speaker embeddings from each speech segment
using the pre-trained TitaNet-L model [18]. The fourth com-
ponent clustered the speaker embeddings at each scale of the
multi-scale resolutions into estimated speaker clusters by com-
puting a cosine similarity matrix from the embeddings and then
applying a spectral clustering algorithm to the similarity matrix
and its eigenvalues [19]. Lastly, a multi-scale decoder model
assigned speaker labels [17]. The model was trained to weigh
the importance of embeddings extracted from segments of vary-
ing lengths, facilitating accurate labelling of segments as short
as 0.5 seconds.

NeMo’s accuracy was tested against the off-the-shelf IBM-
Watson model on a sample of the single word production task
by four children (age range = 4 – 10 years, mean = 6.75). IBM-
Watson Diarisation was accurate with 85%–91% of all target
words identified as child speech. As NeMo had comparable
accuracy with 92%-100% of target words identified as child
speech and was open-source run and controlled locally, NeMo
diarisation was selected.

2.3. Automatic word recognition with UNSW ASR

The custom-built University of New South Wales (UNSW)
ASR tool was used to orthographically transcribe audio (Fig.
1). The customised UNSW ASR model was developed with
an acoustic model trained on American English child speech
data and a language model trained on a combination of adult
and children’s speech transcriptions [20]. The acoustic model
was built using a hybrid phoneme-based DNN-HMM architec-
ture, implemented with the Kaldi toolkit [21]. The acoustic
model utilised a Factored Time-Delay Neural Network (TDNN-
F) architecture trained using lattice-free Maximum Mutual In-
formation (MMI) training criteria [22, 23]. The acoustic model
was trained on approximately 380 hours of child data spanning
scripted and spontaneous speech collected from around 5,600
children aged 5 to 16 years old from five American speech cor-
pora: 1) the Oregon Graduate Institute Kids’ Speech Corpus,
2) the Carnegie Mellon University Kids’ Speech Corpus, 3)
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Figure 1: AusKidTalk workflow to generate automatic orthographic transcription.

the University of Colorado Kids’ Prompted, Read, and Sum-
marized Speech Corpus, 4) the My Science Tutor Children’s
Speech Corpus, and 5) the Trentino Language Testing Dataset
[24, 25, 26, 27, 28]. The original child data were augmented to
2,000 hours using speed perturbation, real Room Impulse Re-
sponse addition, babble noise, and non-speech noise.

The language model was trained on adult speech transcrip-
tions extracted from TED talks, along with transcriptions from
the child speech corpora used for training the acoustic model
[29]. To prioritise Task 1 prompts, the language model was in-
terpolated with a specialised model trained on prompts alone.
No words were prioritised in Task 3, as the spontaneous story-
telling task did not have a fixed vocabulary.

UNSW ASR’s accuracy was tested against the off-the-shelf
IBM-Watson model on a sample of the single word production
task by four children (age range = 4 – 10 years, mean = 6.75)
[30]. The accuracy of IBM-Watson was so low as to being prac-
tically unusable with a word error rate ranging from 94% to
57% per child [30]. The low ASR accuracy of IBM Watson
combined with the preference for an open-source ASR tool run
and controlled locally motivated using the UNSW ASR.

2.4. Workflow output

The automated tools of the workflow (i.e., high-frequency tone
detection, NeMo, and UNSW ASR) were implemented sequen-
tially (Fig. 1). First, automatic tone detection was used to time-
align the audio with the time-stamps, and Task 1 and Task 3 au-
dio were extracted. Extracted audio files with NeMo textgrids
containing diarised and time-aligned speech on separate tiers
for each speaker were compared to the prompt intervals and
fed to the UNSW ASR. When a prompt interval did not over-
lap with any speaker-intervals identified by NeMo, the entire
prompt interval was transcribed by the UNSW ASR system; the
recognised words were added to all speaker tiers. For all other
prompt intervals, only speaker-segments identified by NeMo
were transcribed by the UNSW ASR. The output of the auto-
matic analysis tools was an audio-file segmented on a task-by-
task basis, time-aligned with picture prompts, and the speech
of all automatically identified speakers transcribed on separate
speaker tiers (Fig. 2). Transcription of all speaker tiers were
required, as NeMo, while able to separate speakers, could not
identify which speaker was the child. At the time of writing,
textgrids were generated for 456 Task 1 and 330 Task 3 files.

3. Workflow evaluation
3.1. Testing the workflow

Task- and prompt alignment and diarisation quality were eval-
uated using auditory and visual observation of the audio- and
textgrid files by expert annotators. The annotators compared
automatic time-alignment between the audio and the elicitation
tasks by listening to the start and end of each audio file to ensure
that the audio contained speech data only from the relevant task.
The annotators compared the prompts to the speech to evalu-
ate prompt-speech alignment by evaluating whether the child’s

Figure 2: AusKidTalk workflow output. Top: waveform. Bot-
tom: picture prompt tier followed by time-aligned transcription
of three speakers on separate tiers.

speech matched the expected prompt. To evaluate diarisation
quality, the annotators listened to each recording and identified
which speaker-tier belonged to the child.

Accuracy of UNSW ASR was evaluated by introducing
a hand-correction protocol to correct automatically generated
transcription of the child’s speech. In Task 1, annotators were
instructed to identify intervals that contained the target word
matching the picture prompt, accept the automatically gener-
ated transcription if it was correct, and edit the transcription if
it was incorrect (i.e., it did not match what the child said) [30].
In Task 3, annotators were instructed to identify speaker-turns
for each picture prompt that contained only child speech. That
is, annotators were instructed to identify intervals during which
the child spoke without interruption from the adult. Annota-
tors were instructed to edit the child’s turns such that it only
contained child speech, accept the automatically generated tran-
scription if it was correct, and edit it if it was incorrect. Auto-
matically generated transcription of adult speech was not hand-
corrected. Annotators’ were supervised and their work was
checked periodically to assist consistency of hand-corrections.

3.2. Task- and prompt alignment performance

At the time of writing, 456 Task 1 and 201 Task 3 files were
pre-screened for task- and prompt-alignment. Task and prompt
alignment was typically good, with 26 Task 1 (5.7%) and 35
(17%) Task 3 files showing poor alignment.

3.3. Diarisation performance

At the time of writing, 456 Task 1 and 201 Task 3 files were
pre-screened for diarisation quality. In Task 1 diarisation, an av-
erage of 2.9 speakers (standard deviation = 0.5) were identified
out of the expected three (interviewer, child, and pre-recorded
model speakers providing verbal prompts). In Task 3, an aver-
age of 1.9 speakers (standard deviation = 0.74) were identified
per sample, slightly lower than the expected two (interviewer
and child - the model speaker did not occur in Task 3). The
Task 3 average was qualitatively different from Task 1, as iden-
tifying two speakers out of three allowed for separating the child
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speaker from the non-child speakers, whereas identifying one
out of two speakers indicated failed diarisation.

Reduction in diarisation quality is attributed to Task 3 be-
ing shorter than Task 1 (3.5 minutes on average compared to
22 minutes) and to the limited amount of speech produced by
the interviewer. Impressionistic observation suggested that the
interviewer produced less speech relative to the child in Task 3
than Task 1. While in Task 1, the interviewer frequently pro-
vided verbal cues for the children to help them recognise the
pictures, verbal prompts in Task 3 were limited to an occasional
“What else happened?”. As a result, adult and child speech were
not always separated well in Task 3.

3.4. Word Error Rate

At the time of writing, 395 Task 1 and 80 Task 3 files were
hand-corrected. To evaluate ASR accuracy on comparable Task
1 and Task 3 sets, children with hand-corrected data for both
tasks were identified, yielding a set of 71 children. As anno-
tators were instructed to correct child speech transcription only
and remove transcription for adult speech, ASR accuracy was
evaluated on intervals that contained automatic transcription for
child speech only. For Task 3, one child had no turn-intervals
containing child speech only due to diarisation errors and in-
terruptions by the adult, therefore one child was excluded from
further analysis. In total, UNSW ASR accuracy was evaluated
on 2 (tasks) × 71 (children) - 2 (excluded child) = 140 files.

The test set comprised files from three age groups: 20 chil-
dren aged 3-5 years (M = 7, F = 13), 22 children aged 6-8 years
( M = 13, F = 9), and 28 children aged 9-12 years (M = 18, F =
10). Total audio length was 28.9 hours, consisting of 24.6 hours
Task 1 speech (mean duration = 21.1 minutes, standard devia-
tion = 7 minutes) and 4.3 hours Task 3 speech (mean duration =
3.7 minutes, standard deviation = 7 minutes).

Word error rate (WER) was calculated to evaluate UNSW
ASR performance. WER was overall lower for Task 1 (16.5%)
than for Task 3 (22.7%) (Table 1). Lower WER in Task 1
may be attributed to the UNSW ASR prioritising known tar-
get words in Task 1, whereas no words were prioritised in Task
3 containing spontaneous speech with no predefined vocabulary
(Sec. 2.3). ASR errors across both tasks are attributed to accent
differences between UNSW ASR’s American English training
data and the AusE accent in the AusKidTalk data. Accent dif-
ferences are known to adversely impact ASR performance, even
between varieties of English [31, 32, 33]. ASR tools developed
for American English perform worse on AusE due to phono-
logical and phonetic differences, such as the absence of post-
vocalic /ô/ in AusE (i.e., the absence of /ô/ word-finally or be-
fore a consonant, e.g., car and park) and AusE having a larger
vowel inventory containing 18 stressed vowels compared to the
15 stressed vowels of American English [31, 34].

Table 1: Mean WER (%) by Task, Age group, and Sex (M =
male, F = female). Numbers in bold show total WER by Task.

Age (years) Task 1 Task 3
M F Both sexes M F Both sexes

3–5 29 28 28 29 35 33
6 – 8 14 12 13 23 19 20
9 – 12 13 11 12 20 18 17
All ages 16 17 16.5 22 23 22.7

WER decreased with age for both sexes and both tasks (Ta-

ble 1). Younger children are likely to have produced more age-
appropriate errors than older children, challenging the ASR. In
addition, the American English-speaking children in the train-
ing data were older than the youngest AusKidTalk children, in-
creasing age-differences between training and test data. Differ-
ences between boys and girls were marginal in Task 1; Task 3
showed larger sex differences with no clear tendency for better
performance on either male or female speech. The relatively
high WER on AusE-speaking children, in particularly younger
children, highlights the need for accent- and age-matched child
speech data collection for training ASR tools.

4. Conclusion
In this paper, we demonstrated that understanding how speech
technology can be better leveraged at the collection protocol
stage can produce a reliable pipeline that semi-automates the
data transcription. We validated our semi-automatic annotaion
workflow on AusKidTalk, a novel corpus of AusE-speaking
children, by collecting data from 556 children completing mul-
tiple speech tasks, including a single-word production task and
a story-telling task. Automatic task- and prompt-alignment
performed well on both tasks as high frequency tones sepa-
rated tasks during data collection and timestamps of tasks and
prompts were recorded by the stimulus-presenting application.
NeMo diarisation and UNSW ASR both performed better on
Task 1 (single word production task) compared to Task 3 (story-
telling task). Better performance of NeMo diarisation in Task
1 is attributed to the high amount of adult speech, while better
UNSW ASR performance is attributed to Task 1 having a fixed
vocabulary.

UNSW ASR reached sufficient accuracy on both tasks to
reduce annotation burden by allowing hand-correction of auto-
matically generated transcriptions. However, hand-correction
was still required to achieve high quality aligned transcriptions
due to the need to remove adult speech transcription and correct
ASR errors. To improve the workflow for the remaining data,
the audio file containing all five tasks will be diarised prior to
extracting individual tasks to ensure that all speakers provide
enough speech for accurate diarisation. Future work will fo-
cus on continuing hand-correcting Task 1 and 3 data and on
fine-tuning the UNSW ASR tool. The resulting corpus will be
suitable for phonetic analysis of AusE child speech as well as
for ASR development.

The corpus was co-designed by engineers developing data
collection methods with high-frequency tones facilitating semi-
automated annotation methods to reduce annotator burden, and
by phoneticians and speech language pathologists designing
speech tasks suitable for children. The AusKidTalk annotation
workflow concatenated multiple automatic tools in a step-by-
step manner (Fig. 1). As downside of the concatenation, failure
of an initial step affected the performance of the following steps.
For example, when the first step, i.e., task identification, failed
either due to incorrect high-frequency tone detection or due to
the tones not being played during data collection, the relevant
tasks were not extracted and the following steps were not com-
pleted. The workflow cannot be deployed on a few recordings
collected using a pencil-and-paper protocol due to tablet fail-
ure. The benefit of using a series of automatic speech process-
ing tools is easy substitution of new tools if/when state-of-the-
art in-domain diarisation or ASR tools become available. The
described workflow is transferable to other corpora and speech
tasks and highlights the need for co-designing corpora by re-
searchers in speech science and technology.
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