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Abstract
In the speech signal, acoustic landmarks identify times when
the acoustic manifestations of the linguistically motivated dis-
tinctive features are most salient. Acoustic landmarks have been
widely applied in various domains, including speech recogni-
tion, speech depression detection, clinical analysis of speech
abnormalities, and the detection of disordered speech. How-
ever, there is currently no dataset available that provides pre-
cise timing information for landmarks, which has been proven
to be crucial for downstream applications involving landmarks.
In this paper, we selected the most useful acoustic landmarks
based on previous research and annotated the TIMIT dataset
with them, based on a combination of phoneme boundary infor-
mation and manual inspection. Moreover, previous landmark
extraction tools were not open source or benchmarked, so to
address this, we developed an open source Python-based land-
mark extraction tool and established a series of landmark detec-
tion baselines. The first of their kinds, the dataset with landmark
precise timing information, landmark extraction tool and base-
lines are designed to support a wide variety of future research.
Index Terms: Acuostic Landmark, Speech Processing

1. Introduction
In speech processing, frame-based methods are most commonly
used to segment the speech waveform. This method treats each
frame as the central unit of analysis, with a fixed set of speech
attributes measured at each frame, has been used in many do-
main [1, 2]. However, because this approach relies on fixed-
duration processing, it often overlooks important timing fac-
tors such as speaking rate and segmental duration. In contrast,
acoustic landmark detection focuses on specific, acoustically
significant points in the speech signal [3], as illustrated in Fig-
ure 1. This method allows for the identification of acoustic land-
marks somewhat independently of frames, while also providing
valuable timing information for subsequent processing.

Acoustic landmarks have been proven highly effective
across various fields. Initially applied in speech recogni-
tion [3, 4], they have since been extended to the health domain,
including applications such as depression detection [5, 6], clin-
ical analysis of speech abnormalities [7], and the detection of
disordered speech [8]. Despite the success of acoustic land-
marks in various fields, no dataset currently provides precise
ground truth timing information for the occurrence of acoustic
landmarks, making it difficult to produce standardized results
on a baseline dataset [5,8]. To address this research gap, we se-
lected the most useful acoustic landmarks based on previous re-
search [6–10] and annotated the TIMIT dataset [11] with them,
with some landmarks labeled according to phoneme boundary
information and others manually annotated.

Figure 1: Example of acoustic landmarks: The speech signal is
discretized into a series of tokens with speech production infor-
mation

Moreover, previous landmark extraction tools were based
on closed-source software, making it difficult to understand
their inner workings, and had not been benchmarked. To over-
come this limitation, we developed an open source Python-
based acoustic landmark extraction tool - Auto-Landmark and
established a series of acoustic landmark detection baselines to
support future research.

2. Related Work

2.1. Acoustic Landmarks

The idea of acoustic landmarks originates from studies on dis-
tinctive features [12]. Distinctive features offer a concise way to
describe the sounds of a language at a subsegmental level. They
are closely related to both acoustics and articulation, character-
ized by binary values. This minimal set of features allows for
the differentiation of each segment within a language. Land-
marks serve as indicators of the underlying segments, which
group distinctive features into bundles. Landmarks are catego-
rized into four groups: abrupt-consonantal, abrupt, non-abrupt,
and vocalic. While scholars have slightly different definitions
of acoustic landmarks, [13] expanded upon [3] by releasing
a MATLAB-based landmark detection toolkit (SpeechMark),
which has become the most widely used approach for landmark
detection.
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Table 1: Description of the five landmarks investigated.

Landmark Description

g
vibration of vocal folds start (+) or end
(–)

b
onset (+) or offset (–) of existence of tur-
bulent noise during obstruent regions

s releases (+) or closures (–) of a nasal

v voiced frication onset (+) or offset (–)

f frication onset (+) or offset (–)

2.2. Application of Acoustic Landmarks

Acoustic landmarks were initially used in speech recogni-
tion [3, 4], with some researchers exploring the combination of
acoustic landmarks with CTC in this context [4]. Following
their success in speech recognition, acoustic landmarks have
been applied to various other domains. Acoustic landmarks
have been widely applied in various health-related studies. For
example, [5, 6] utilized acoustic landmark timing information
for depression detection. [9, 14, 15] further extended the use
of acoustic landmarks by tokenizing speech for large language
model-based systems in depression detection. [8] used acous-
tic landmark time duration to describe abnormalities in speech
production that affect a speaker’s intelligibility. [7] evaluated
the feasibility of differentiating conversational and clear speech
produced by individuals with muscle tension dysphonia (MTD)
using landmark-based analysis of speech.

3. Acoustic Landmark Dataset
3.1. Dataset and Landmark Selection

As shown in Table 1, we selected five different types of acoustic
landmarks based on previous research [5–10], each with the on-
set and offset states. These landmarks are g(lottis), s(sonorant),
f(ricative), v(voiced fricative), and b(ursts), which are pointing
in time where different abrupt articulatory events occur.

The g (glottis) landmark captures the start or end of the
vocal fold vibration, which is crucial in identifying voiced
phonemes where the vocal cords are active. The b (bursts)
landmark marks the onset or offset of turbulent noise during ob-
struent regions, such as plosives or stops, which are significant
for identifying consonant sounds. The s (sonorant) landmark
indicates the releases or closures of nasal sounds and glides [l],
which are produced with a continuous airflow through the vocal
tract. Proper identification of these sonorants is important for
understanding the nasal quality in speech. The v (voiced frica-
tive) landmark captures the onset or offset of voiced frication,
with voiced fricatives like [v] and [z] involving continuous vi-
bration of the vocal cords while producing a turbulent airflow.
Lastly, the f (fricative) landmark indicates the onset or offset
of frication, with fricatives like [f] and [s] characterized by the
turbulent airflow created by a narrow constriction in the vocal
tract [16, 17].

3.2. Labeling Convention

As discussed in the previous section, landmarks are closely as-
sociated with phonemes, which makes the TIMIT dataset [11]
with its manually annotated phoneme boundaries an ideal

Table 2: Rules for Annotating Data

Landmark Details

v+ Start time of voiced frication phone

v- End time of voiced frication phone

f+ Start time of frication phone

f- End time of frication phone

s+ Start time of nasal or [l] phone

s- End time of nasal or [l] phone

b+ Sudden energy increase in stop and af-
fricate in the spectrum

b- Sudden energy decrease in stop and af-
fricate in the spectrum

g+ Start time of voiced phones (vowels,
voiced fricatives, nasals, b, d, g)

g- End of glottal phone, or change to voice-
less stops, fricatives, or affricates

choice for annotation. We utilized Praat [18] to facilitate the
labeling process. We first identified the boundaries of the
phonemes associated with landmark, then used Praat to help
determine the exact timing of these landmarks.

Table 2 outlines the rules we followed for annotating acous-
tic landmarks. Each landmark corresponds to specific phonetic
events and transitions within the speech signal. The v+ and v-
landmarks indicate the start and end times of voiced fricatives,
such as [z], [zh], [v], and [dh]. Similarly, f+ and f- mark the start
and end times of fricatives like [s], [sh], [f], and [th]. For nasals
and the glides [l], the s+ and s- landmarks represent the start and
end times, covering phonemes like [m], [n], [ng], [em], [en],
[eng], and [nx]. The b+ and b- landmarks capture the sudden
energy changes in stops and affricates, including [b], [d], [g],
[p], [t], [k], [dx], [q], [jh], and [ch] and manually labeled. Fi-
nally, the g+ and g- landmarks denote the start and end times of
voiced phones, encompassing a range of vowels (e.g., [iy], [ih],
[eh], [ey], [ae], [aa], [aw], [ay], [ah], [ao], [oy], [ow], [uh], [uw],
[ux], [er], [ax], [ix], [axr], [ax-h]), voiced fricatives, nasals, and
stops such as [b], [d], and [g]. The g- landmark also indicates
the transition from voiced to voiceless sounds.

3.3. Statistics of Landmark Dataset

Figure 2 illustrates the proportion of each landmark in the
dataset. As shown, the g landmark has the highest proportion
in both the training and test sets. However, the proportion of
the b landmark in the test set is significantly lower than in the
training set. We found that this discrepancy is due to the lower
proportion of phonemes associated with the b landmark in the
test set compared with the train set.

4. Landmark Detection System
We provide both signal processing and deep learning methods
for landmark detection. For the former, we developed an open-
source Python tool to address the gap in fully Python based
open-source solutions. For the latter, we advanced the field
by incorporating landmark detection into cutting-edge research
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Figure 2: Landmark distribution in the TIMIT dataset [11] for
the training and test sets. Right is Landmark distribution in the
training set, left is Landmark distribution in the test set

and provided an ESPnet [19] recipe to facilitate this.

4.1. Filter-based Method

Our implementation of the signal processing-based method is
based on [3, 9, 13]. Initially, the spectrogram is divided into
six frequency bands. Landmarks are identified through energy
changes within these bands using a two-pass strategy. Different
landmarks are determined by analyzing either a single band or
a combination of multiple bands.

The g landmark is identified when both the coarse and fine
filters exhibit a peak in band 1. The b landmark, in an un-
voiced segment (not between +g and the next -g), it is identified
if at least three out of five frequency bands show simultane-
ous power increases of no less than 6 dB in both coarse and
fine filters. The s landmark is identified in a voiced segment
(between +g and the next -g) under the same conditions: si-
multaneous power increases of no less than 6 dB in at least
three out of five frequency bands in both coarse and fine fil-
ters. The f+ and v+ landmarks are detected by identifying
a 6 dB power increase in at least three high-frequency bands
(4, 5, 6) and a power decrease in low-frequency bands (2, 3).
Conversely, for f- and v-, the criteria involve a 6 dB power de-
crease in the high-frequency bands and a power increase in the
low-frequency bands. The key distinction is that frication land-
marks are detected in unvoiced segments (b landmark), while
voiced frication landmarks are detected in voiced segments (s
landmark). The details of the method can be found in [3, 9, 13].

4.2. Deep Learning Based Method

To date, landmark detection has not been performed with deep
learning models. Our first consideration is how to model this
problem. In this paper, since both landmark detection and
speech recognition tasks involve converting speech signals into
symbols, we approach landmark detection as a speech recogni-
tion task. We employ a Hybrid CTC/attention end-to-end archi-
tecture [20]. We utilized two types of models as the Encoder:
the Conformer [21] and ConExtBimamba [22–24]. For the de-
coder, we employed the Transformer model [25]. Given the suc-
cess of self-supervised models in various speech tasks [26], we
therefore explored how they perform on the landmark detection
task. Specifically, we utilized the wav2vec2.0 large model [27].
We followed the Superb setup [28], using the weighted sum fea-
ture from different layers of wav2vec2.0.

4.3. Toolkit for Landmark Extraction

Previous landmark extraction tools were not open source, mak-
ing it difficult to understand their inner workings. To address

Figure 3: Example of labeling Using Praat: the b landmark is
marked when the energy suddenly changes

this, we developed an open-source Python-based tool, Auto-
Landmark, for landmark extraction.
C.1) Directory Structure
Auto-Landmark adopts a structure similar to the directory or-
ganization of ESPnet [19]. There are four main folders: egs,
which is organized Recipe for each dataset; methods, which
stores different landmark extraction methods; utils, contain-
ing commonly used functions; and visualisation, which houses
functions related to visualization. There are two datasets now
supported by Auto-landmark, TIMIT [11] and DAIC-WOZ [29]
C.2) Toolkit workflow
Stage 1-2 Data preparation: The initial data format follows
the Kaldi style. After preprocessing, all speech data is converted
into a standard format for resampling and segmentation.
Stage 3 Landmark Extraction: At this stage, the primary task
is to execute different algorithms for landmark extraction. So
far, we have provided two distinct types of landmarks: basic
and advanced. The main difference between the two lies in the
implementation of the filters and the smoothing methods. The
basic method applies moving window average smoothing, a
simpler approach that focuses on noise reduction in energy sig-
nals. This method is effective for peak detection but offers less
flexibility and control, making it more suitable for straightfor-
ward tasks. On the other hand, the advanced method utilizes
linear convolution smoothing with customizable kernels, such
as Hanning windows, providing greater control and adaptabil-
ity for handling more complex data. For more details on their
differences, please refer to the code.
Optional Visualization: We have provided additional visual-
ization tools to help health researchers in analyzing cases.

5. Results and Discussion
5.1. Experimental Setup

Signal Processing Method: Our two-pass filter utilizes six
band energies, specifically in the ranges of 0.0–0.4, 0.8–1.5,
1.2–2.0, 2.0–3.5, 3.5–5.0, and 5.0–8.0 kHz. Following previ-
ous work [3, 9, 13], the coarse processing uses 20ms smoothing
with an 8 dB threshold for peak detection. In fine processing,
10ms smoothing is applied, and peak detection targets thresh-
olds within the range of 5 dB to 8 dB.
Deep Learning Method: We conducted our experiments using
a V100 32G GPU, with the model configuration based on the
best results from the AN4 dataset [30] in ESPnet, given that
both TIMIT and AN4 are small datasets. The training utilized
a single V100 32G GPU with batch bins of 1,000,000, using
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Table 3: Landmark detection results for different methods

Method LER(↓)

Singal Processing Method

− SpeechMark [13] 56.53

− Auto-Landmark 56.73

Deep Learning Method

− Conformer [21] 33.0

− ConBiMamba [22] 31.3

− Wav2vec2 + Conformer 48.3

− Wav2vec2 + ConBiMamba 44.6

the Adam optimizer with a learning rate of 0.001 and a warm-
up scheduler for 2500 steps. The Conformer/ConExtBimamba
encoder was configured with an output size of 256, 2048 linear
units, and 6 blocks. The Transformer decoder had 4 attention
heads, 2048 linear units, 6 blocks, and a dropout rate of 0.1.

5.2. Baseline Result

Table 3 compares the landmark detection results from the two
methods, evaluated by Landmark Error Rate (LER). LER was
calculated based on patterns without considering landmark tim-
ing. Additionally, following previous conventions, we did not
differentiate between onset (+) and offset (–) landmarks [3].All
the deep learning models produced lower LER compared to
both signal processing methods, with the ConExtBiMamba
model outperforming the others. Typically, the overall perfor-
mance of models improves when using self-supervised mod-
els. However, as shown in Table 3, the performance of both
the Conformer and ConExtBimamba models decreased when
combined with wav2vec2, contrary to expectations. This issue
arose because several landmarks occur in close temporal prox-
imity to each other, even simultaneously. This means that nu-
merous landmarks can appear within a 10ms window. However,
as wav2vec uses a 20ms window with a 10ms stride, it potential
misses some landmarks.

5.3. Insights from Self-supervised Weights

Previous research has shown that when using the weighted sum
feature of self-supervised models for downstream tasks, the
weights can be used to analyze the properties of the models
and tasks [31]. Figure 4 shows the feature weights from dif-
ferent layers when using wav2vec2 large combined with the
Conformer for landmark detection. Layers 16, 17, and 18 have
the highest weights. Previous studies using CCA and mutual
information to analyze wav2vec2 found that phonetic informa-
tion is most salient around layer 18 [32]. This suggests that
wav2vec2 treats landmark detection as a task highly related to
phonetic information. However, as described by the definition
of landmarks, they primarily denote points of abrupt change in
the speech signal. Thus, low-level features in speech are also
crucial. Due to the limitations of wav2vec’s window size, many
consecutive abrupt changes are not captured. From Figure 4, we
can see that, unlike the layers associated with phonetic informa-
tion identified by CCA analysis, the weights of shallow features
remain significant for landmark detection. According to [33],
the shallow features of wav2vec are more similar to low-level

Figure 4: Layer Weight of wav2vec2.0 for Landmark Detection

features, indicating that the model captures effects that are not
solely related to phonetic information.

6. Conclusion
In this study, we made several key contributions to the field of
acoustic landmark detection. First, we provided the first pub-
licly available dataset with manually annotated acoustic land-
marks and precise timing ground truth. Second, we also devel-
oped the first Python-based open-source implementation of the
landmark detection methods originally proposed by [3]. Fi-
nally, we established new baselines for landmark detection with
deep learning models and comprehensively benchmarked these
methods. Our analysis demonstrated that effective landmark
detection requires both phonetic and low-level feature informa-
tion. This dataset and the accompanying tools will significantly
benefit research into conditions that affect speech timing, such
as dementia, Parkinson’s, intoxication, speech impairment, and
language learning. Previous research has shown that timing in-
formation is crucial for the application of landmarks in mental
health [5, 10], making our timing-based benchmarking particu-
larly valuable. Moreover, since CTC-based models struggle to
capture timing information, developing deep learning models
that can more precisely estimate the timing of landmarks will
be an important direction for future research.
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